Efficient and scalable cross-matching of (very) large catalogues

François-Xavier Pineau¹, Thomas Boch¹ and Sebastien Derrière¹

¹CDS, Observatoire Astronomique de Strasbourg

ADASS Boston, 08 November 2010
Context

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues:
 - Simbad
 - Vizier
 - XML

- Algorithms:

- Particularity: deal with (very) large catalogues
Context

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues:
 - Simbad
 - Vizier
- Algorithms:
- Particularity: deal with (very) large catalogues
Context

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues:
 - SimBAD
 - VizieR
- Algorithms:
 - Data points
- Particularity: deal with (very) large catalogues
Context

CDS cross-match service (in development)

- Based on UWS (job submission)
- Catalogues:
 - Simbad
 - VizieR
- Algorithms:
- Particularity: deal with (very) large catalogues
Dealing with (very) large catalogues

Example

- **2MASS**
 - ~470x10^6 sources
 - minimal data ~ 15 GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B+8 B)
 - errors (float 4 B+4 B+4 B)

- **USNO-B1**
 - ~10^9 sources
 - minimal data ~ 28 GB
 - identifier (integer 4 B)
 - positions (double 8 B+8 B)
 - errors (float 4 B+4 B)

- **LSST projection at 5 years:**
 - V>26, ~3x10^9 unique sources
 - minimal data ~ 96 GB

Problems

- Data size
 - do not fit into memory

- Performance issues
 - data loading
 - looking for candidates

Solutions

- Scalability: Healpix partitioning
- Efficiency:
 - special indexed binary file
 - kd-tree (cone search queries)
 - multithreading
 - parallel processing
Dealing with (very) large catalogues

Example

- **2MASS**
 - \(\sim 470 \times 10^6 \) sources
 - minimal data \(\sim 15 \) GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B + 8 B)
 - errors (float 4 B + 4 B + 4 B)

- **USNO-B1**
 - \(\sim 10^9 \) sources
 - minimal data \(\sim 28 \) GB
 - identifier (integer 4 B)
 - positions (double 8 B + 8 B)
 - errors (float 4 B + 4 B)

- **LSST projection at 5 years:**
 - \(V > 26, \sim 3 \times 10^9 \) unique sources
 - minimal data \(\sim 96 \) GB

Problems

- **Data size**
 - do not fit into memory

- **Performance issues**
 - data loading
 - looking for candidates

Solutions

- **Scalability:** Healpix partitioning
- **Efficiency:**
 - special indexed binary file
 - \(kd \)-tree (cone search queries)
 - multithreading
 - parallel processing

François-Xavier Pineau (CDS)
Dealing with (very) large catalogues

Example

- 2MASS
 - ~ 470\times 10^6 sources
 - minimal data ~ 15 GB
 - identifier (integer 4 Bytes)
 - positions (double 8 B + 8 B)
 - errors (float 4 B + 4 B + 4 B)

- USNO-B1
 - ~ 10^9 sources
 - minimal data ~ 28 GB
 - identifier (integer 4 B)
 - positions (double 8 B + 8 B)
 - errors (float 4 B + 4 B)

- LSST projection at 5 years:
 - V > 26, ~ 3 \times 10^9 **unique** sources
 - minimal data ~ 96 GB

Problems

- Data size
 - do not fit into memory

- Performance issues
 - data loading
 - looking for candidates

Solutions

- Scalability: Healpix partitioning
- Efficiency:
 - special indexed binary file
 - \textit{kd}-tree (cone search queries)
 - multithreading
 - parallel processing
Healpix

- Hierarchical sky pixelisation
 - level 0 \(\mapsto\) 12 pixels
 - level 1 \(\mapsto\) 12x4 pixels
 - ...
 - level \(n\) \(\mapsto\) 12x\(2^n\)
- Pixels of equal area
- Developed at NASA: healpix.jpl.nasa.gov
- Available in
 - C, C++
 - Fortran
 - IDL
 - Java
 - ...?
Scalable cross-match

- Independent pixels cross-match
 - but border effects
- Cat. B pixel sources put in a kd-tree
- Optimal partitioning level
 - available memory
 - minimisation of:
 \[
 \sum_{i=0}^{nPixels} N_{A_i} \log(1 + N_{B_i} + N_{B_i}^b)
 \]
 - I/O cost

Level 0

Level 1
Scalable cross-match

- Independent pixels cross-match
 - but border effects
- Cat. B pixel sources put in a kd-tree
- Optimal partitioning level
 - available memory
 - minimisation of:
 \[
 \sum_{i=0}^{n\text{Pixels}} N_{A_i} \log(1 + N_{B_i} + N_{B_i}^b)
 \]
 - I/O cost

Level 0

Level 1

A

B
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework:
 - based on UWS (few machines)
 - Hadoop (large grid)
- “On the fly” correlation possible

\(^a\)Universal Worker Service (IVOA)
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework:
 - based on UWS\(^a\) (few machines)
 - Hadoop (large grid)
- “On the fly” correlation possible

\(^a\)Universal Worker Service (IVOA)
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework:
 - based on UWS\(^a\) (few machines)
 - Hadoop (large grid)
- “On the fly” correlation possible

\(^a\)Universal Worker Service (IVOA)
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework:
 - based on UWS\(^a\) (few machines)
 - Hadoop (large grid)
- “On the fly” correlation possible

\(^a\)Universal Worker Service (IVOA)
Scalable cross-match

Single machine

- All sky correlation (small catalogues)
 - allow “on the fly” correlation
- Correlation pixel by pixel (large catalogues)

Computer grid

- Parallel processing
- Framework:
 - based on UWS\(^a\) (few machines)
 - Hadoop (large grid)
- “On the fly” correlation possible

\(^a\)Universal Worker Service (IVOA)
Loading data: indexed binary files

Binary data file

- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - ...

- Sources ordered by healpix pixel index
Loading data: indexed binary files

Index files
- One by healpix level
- For each pixel
 - offset
 - nSources

Binary data file
- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - ...
- Sources ordered by healpix pixel index

<table>
<thead>
<tr>
<th>level 0 index file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idx</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>11</td>
</tr>
</tbody>
</table>

François-Xavier Pineau (CDS)
Loading data: indexed binary files

Index files
- One by healpix level
- For each pixel
 - offset
 - nSources

Binary data file
- Organized by blocks:
 - positions
 - position errors
 - identifiers
 - ...
- Sources ordered by healpix pixel index

Francois-Xavier Pineau (CDS)
X-Match of large catalogues
08/11/2010 7 / 16
What is a kd-Tree?

- A space-partitioning data structure
- Allows for fast k-nearest neighbour/cone search queries
 - nearest neighbour query in $O(\log(n))$

Problem

- Naive implementation can be memory consuming
- We want a memory efficient kd-tree (capacity > 1 billion sources)

Solution

- To use a single array (sorted using a kd-tree scheme)
What is a kd-Tree?

- A space-partitioning data structure
- Allows for fast k-nearest neighbour/cone search queries
 - nearest neighbour query in $O(\log(n))$

Problem

- Naive implementation can be memory consuming
- We want a memory efficient kd-tree (capacity > 1 billion sources)

Solution

- To use a single array (sorted using a kd-tree scheme)
What is a *kd*-Tree?

- A space-partitioning data structure
- Allows for fast *k*-nearest neighbour/cone search queries
 - nearest neighbour query in \(O(\log(n)) \)

Problem

- Naive implementation can be memory consuming
- We want a memory efficient *kd*-tree (capacity > 1 billion sources)

Solution

- To use a single array (sorted using a *kd*-tree scheme)
A kd-tree can be a simple sorted array of sources
Algorithm: *quicksort* alternating the sorted coordinate
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

\[
\begin{align*}
\alpha \leq \alpha_{S_3} & \quad \delta \leq \delta_{S_{10}} \\
\alpha_{S_3} & \quad \delta_{S_{10}} \leq \delta \\
\alpha_{S_3} \leq \alpha & \quad \delta_{S_8} \leq \delta \\
\alpha \leq \alpha_{S_{11}} \leq \alpha & \quad \alpha \leq \alpha_{S_6} \leq \alpha \\
\alpha \leq \alpha_{S_4} \leq \alpha & \quad \alpha \leq \alpha_{S_2} \leq \alpha \\
\end{align*}
\]
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

Creation speed up by using multi-threading
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

Creation speed up by using multi-threading
A *kd*-tree can be a simple sorted array of sources
Algorithm: *quicksort* alternating the sorted coordinate

Creation speed up by using multi-threading
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

Thread 1

Creation speed up by using multi-threading
A *kd*-tree can be a simple sorted array of sources

Algorithm: *quicksort* alternating the sorted coordinate

```
α
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
δ
```

Creation speed up by using multi-threading
A \(kd \)-tree can be a simple sorted array of sources

Algorithm: \textit{quicksort} alternating the sorted coordinate

Thread 1

Thread 2

Thread 3

Thread 4

Creation speed up by using multi-threading
Modified kd-tree and multithreading

Modified kd-tree

- Classical kd-tree adapted for euclidian spaces
- Solution 1: (rejected)
 - cartesian coordinates (x, y, z)
 - \leadsto time consuming (conversion)
 - \leadsto memory consuming (+50%)
- Solution 2: (approved)
 - spherical coordinates (α, δ)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

Multithreading

- Single kNN or cone search query not multithread
- Pool of threads executing multiple queries simultaneously
Modified \(kd \)-tree and multithreading

Modified \(kd \)-tree

- Classical \(kd \)-tree adapted for euclidian spaces
- **Solution 1:** (rejected)
 - cartesian coordinates \((x, y, z)\)
 - \(\mapsto\) time consuming (conversion)
 - \(\mapsto\) memory consuming (+50%)
- **Solution 2:** (approved)
 - spherical coordinates \((\alpha, \delta)\)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

Multithreading

- Single \(kNN \) or cone search query not multithread
- Pool of threads executing multiple queries simultaneously
Modified kd-tree and multithreading

Modified kd-tree

- Classical kd-tree adapted for euclidian spaces
- Solution 1: (rejected)
 - cartesian coordinates \((x, y, z)\)
 - \(\leadsto\) time consuming (conversion)
 - \(\leadsto\) memory consuming (+50%)
- Solution 2: (approved)
 - spherical coordinates \((\alpha, \delta)\)
 - classical creation algorithm
 - modified query algorithm
 - angular distances (Haversine formula)
 - modified circle/rectangle intersection to enter a sub-tree

Multithreading

- Single kNN or cone search query not multithread
- Pool of threads executing multiple queries simultaneously
Test Machine

- Dell machine 2 600€ (\sim3 600):
 - 24 GB of **1333 MHz** memory
 - 2x Quad Core 2.27 GHz (Xeon)
 - **16 threads** (Hyper-Threading)
 - High speed HDD (10 000 rpm)
Test results

Full catalogue cross-correlation

SDSS DR7 (∼357 000 000 sources)
2MASS (∼470 000 000 sources)

- Simple cross-match: ∼9 min
 - radius of 5″
 - Healpix level 3 (∼7.3°)
 - Level 9 borders (∼7′)
 - ∼49 209 000 associations

- With elliptical errors: ∼10 min
 - distance of 3.44σ
 - distance max of 5″
 - Healpix level 3
 - ∼37 507 000 associations
Test results

Full catalogue cross-correlation

SDSS DR7 (∼357 000 000 sources)

Simple cross-match: ∼9 min
- radius of 5″
- Healpix level 3 (∼7.3°)
- Level 9 borders (∼7’)
- ∼49 209 000 associations

With elliptical errors: ∼10 min
- distance of 3.44σ
- distance max of 5″
- Healpix level 3
- ∼37 507 000 associations

Francois-Xavier Pineau (CDS)
Test results

Full catalogue cross-correlation

SDSS DR7 (∼357 000 000 sources) 2MASS (∼470 000 000 sources)

- Simple cross-match: ∼9 min
 - radius of 5″
 - Healpix level 3 (∼7.3°)
 - Level 9 borders (∼7′)
 - ∼49 209 000 associations

- With elliptical errors: ∼10 min
 - distance of 3.44σ
 - distance max of 5″
 - Healpix level 3
 - ∼37 507 000 associations
Lessons learned

Hardware

For our application:
- RAM frequency *does* matter (lots of memory access)
- Hyper-Threading *does* matter (on 8 cores, 16 threads ∼ 2x faster than 8 threads)

Software: don’t have *a priori*

- Efficient full Java code
- Efficient modified kd-trees (in our case)

Service

- Existing and future (very) large catalogues can be processed
- Bottleneck is data transfer (without surprise)
 - service collocated with data
Test results

Full all-sky catalogues cross-correlation

2MASS (∼470 000 000 sources)
USNO-B1 (∼1 046 000 000 sources)

- Simple cross-match: ~30 min
 - radius of 5”
 - Healpix level 3
 - Level 9 borders
 - ~583 300 000 associations
Basic likelihood ratio (LR)

Ratio between:

- **Rayleigh distribution**
 \[
 LR = \frac{r \exp \left(-\frac{1}{2} r^2 \right)}{2 \lambda r} = \frac{\exp \left(-\frac{1}{2} r^2 \right)}{2 \lambda}
 \]

- **Poissonian distribution**
 Depends on:
 - \(r = \) normalized distance in \(\sigma \)
 - \(\lambda \propto \) local density of sources

Test results

- SDSS7 x 2MASS correlations + LRs
- Local densities estimated by kNN averaging (\(k=100 \))
- \(\sim 15 \text{ min} \)
Basic likelihood ratio (LR)

Ratio between:

- Rayleigh distribution

\[LR = \frac{r \exp \left(-\frac{1}{2} r^2 \right)}{2\lambda r} = \frac{\exp \left(-\frac{1}{2} r^2 \right)}{2\lambda} \]

- Poissonian distribution

Depends on:

- \(r = \) normalized distance in \(\sigma \)
- \(\lambda \propto \) local density of sources

Test results

- SDSS7 x 2MASS correlations + LRs
- Local densities estimated by kNN averaging (\(k=100 \))
- \(\sim 15\) min
Basic likelihood ratio (LR)

Ratio between:
- Rayleigh distribution
 \[LR = \frac{r \exp\left(-\frac{1}{2}r^2\right)}{2\lambda r} = \frac{\exp\left(-\frac{1}{2}r^2\right)}{2\lambda} \]
- Poissonian distribution

 Depends on:
- \(r = \) normalized distance in \(\sigma \)
- \(\lambda \propto \) local density of sources

Test results
- SDSS7 x 2MASS correlations + LRs
- Local densities estimated by kNN averaging (\(k=100 \))
- \(\sim 15 \text{min} \)
Going further...

Magnitude-dependent LRs (fast solution)

1. \(\rho(m \pm \Delta m) = \rho \cdot p(m \pm \Delta m) \)
2. kNN averaging
3. log N-log S law
4. SDSS7, level 6 (\(\sim 1^\circ \)), 15 187 non empty histograms computed in 30s.

Probability of identifications (fast solution)

1. Number of spurious match estimates
 - Positional errors sampling for both catalogues
 \[N_{spur} = \sum_A \sum_B S_{conv}/S_{pixel} \]
2. SDSS7 x 2MASS, level 6, 8min (not yet multithreaded!)
Going further...

Magnitude-dependent LRs (fast solution)

- \(\rho(m \pm \Delta m) = \rho_p(m \pm \Delta m) \)
- \(k\text{NN averaging} \)
- \(\log N \log S \text{ law} \)
- SDSS7, level 6 (~1°), 15,187 non empty histograms computed in 30s.

Probability of identifications (fast solution)

- Number of spurious match estimates
 - Positional errors sampling for both catalogues
 - \(N_{\text{spur}} = \sum_A \sum_B S_{\text{conv}} / S_{\text{pixel}} \)
- SDSS7 x 2MASS, level 6, 8min (not yet multithreaded!)