A Distributed Datacube Analysis Service for Radio Telescopes

University of British Columbia
Okanagan Campus

Venkat Mahadevan
Dr. Erik Rosolowsky
ADASS 2010
Overview

- Within the context of the overall CyberSKA Project, we are currently developing the cyberinfrastructure to enable distributed storage and processing of data in the form of FITS data cubes.

- Our primary motivations are:
 - to provide transparent access to cloud computing resources.
 - to provide users with access to their data via a web based science portal so they can manage and analyze large data sets.
Overview (cont.)

- A web portal has been established at www.cyberska.org.
- Users can access web-based data analysis applications as well as various data sets.
- Users can also participate in group discussions and project development.
Overview (cont.)

CyberSKA

Description:
The CANARIE NERP-2 Cyber-SKA Project to develop cyber infrastructure for collaborative execution of major radio survey projects leading up to the Square Kilometre Array.

Tags: nerp-2, canarie, canada, cyber-ska

Website:

Membership Criteria:
Participant or collaborator in the Cyber-SKA project.

Owner: Russ Taylor
Group members: 31

Latest discussion
- CyberSKA Portal - Top Priorities for Collaboration Features
 Posts: 24
- Application Integration to Portal
 Posts: 18
- Usage of BOINC
 Posts: 5
- PHP REST Client Example for Data Management Service
 Posts: 6

Upcoming events
- ADASS 2010
 Astronomical Data Analysis Software and Systems
 7 Nov 2010 - 11 Nov 2010
- CANARIE Users' Forum 2010
 16:00, 24 Nov 2010 - 14:30, 25 Nov 2010

View calendar

Latest Group Activity
- Shannon Jaeger posted a comment on this page | CyberSKA Application for Pipeline Processing
 (4 hours ago)
High-level System Architecture
High-level System Architecture (cont.)

- We want to provide a software stack with the 3 layers that can be setup at remote sites to allow them to join the CyberSKA “federation”.
- Data storage and data processing services will be aggregated and provided to end users on demand.
Data Layer

- FITS files are stored in a data grid based on iRODS (Integrated Rule-Oriented Data System).
- iRODS is a “hands-off” distributed data system i.e. a data grid management system that supports:
 - Data replication and cross-site backups.
 - Abstraction of data location from the user.
 - High speed data transfers using multiple TCP streams.
Data Layer (cont.)

- iRODS also has an advanced “rules engine” to automate administrative tasks. For example, a rule can be used to perform certain processes on a file at check-in time.

- We are primarily using it to store FITS data files at different locations (one at UBC, the other at the University of Calgary).

- Eventually, there will be multiple sites each housing various collections of data.
Data from FITS files is “ingested” into the metadatabase and can be queried using a combination of:

- Spatial coordinate parameters.
- Spectral frequency and stokes parameters.
- Temporal date parameters.
Metadata Layer (cont.)

- FITS Files
 - Read Metadata from FITS Header
 - Compute Convex Hull Bounding Polygon for Data Region
 - Store FITS Files and Populate Metadatabase

Metadatabase

Data Grid
A spatially enabled PostgreSQL/PgSphere database is used to maintain resource metadata.

The schema is based on IVOA Resource Metadata recommendations.

Large volumes of data can be stored in PostgreSQL:

- Unlimited maximum database size.
- 32 TB maximum table size.
Using a spatially enabled database has key advantages when working with astronomical data:

- Spatial data types and queries: e.g. polygon contains/overlaps, circle contains/overlaps, etc.
- Ability to generate complex “astrospatial” queries for data using a more natural SQL syntax.

GiST (Generalized Search Tree) indexes can be used to speedup spatial queries on large databases.
Web Services Layer

- We have developed a web based workflow builder that currently supports image segmentation, image mosaicking (based on the excellent Montage package), spatial reprojection, and plane extraction from data cubes.

- While leveraging distributed data storage and data processing facilities in the background, the user's experience is abstracted away from these details.

- Data is shipped to where the processing facilities exist automatically.
Web Services Layer (cont.)
Future Developments

- The workflow builder will be expanded to include additional computational modules such as:
 - Image convolution.
 - Object identification.
 - Image statistics.
 - Fourier transforms and spectral analysis.
 - Basic pixel array manipulation.

- An API for community developed modules will be developed.
Acknowledgements

- We would like to acknowledge usage of the following open-source software packages (in no particular order):
 - PostgreSQL (http://www.postgresql.org)
 - PgSphere (http://pgsphere.projects.postgresql.org)
 - Bitnami Lamp Stack (http://bitnami.org)
 - CodeIgniter (http://codeigniter.com)
 - jQuery (http://jquery.org)
 - Lightbox+ (http://serennz.sakura.ne.jp/toybox/lightbox)
Acknowledgements (cont.)

- ImageMagick (http://www.imagemagick.org)
- YUI 3 (http://developer.yahoo.com/yui/3)
- Prototype (http://www.prototypejs.org)
- TableKit (http://www.millstream.com.au/upload/code/tablekit)
- iRODS (http://www.irods.org)
- Montage (http://montage.ipac.caltech.edu/)
- WCS Tools (http://tdc-www.harvard.edu/wcstools/)