
An Automated Release Manager for the Fermi An Automated Release Manager for the Fermi
Large Area Telescope Software SystemsLarge Area Telescope Software Systems

Thomas E. Stephens Thomas E. Stephens (Wyle IS/NASA GSFC)

Navid Golpayegani (NASA GSFC)Navid Golpayegani (NASA GSFC)

AbstractAbstract
The Fermi Gamma-ray Space Telescope (Fermi) Large Area

Telescope (LAT) collaboration maintains a large software system
Software Systems

Release Manager ComponentsTelescope (LAT) collaboration maintains a large software system

that covers all aspects of the instrument operation from simulations

of the instrument response to event reconstruction and data

analysis. Much of this software is supported and developed across a

Software Systems
The LAT collaboration software is contained in two major and two

minor software systems or release packages:

• Science Tools – The Science Tools contain all the collaboration

Release Manager Components
The Release Manager consists of three main components: the batch

submission system, the workflow system, and the release manager

analysis. Much of this software is supported and developed across a

variety of operating systems and platforms (Windows, Linux and

Mac OS X, both 32 and 64 bit). In order to ensure that the software

• Science Tools – The Science Tools contain all the collaboration

software related to the scientific analysis of the Fermi LAT data.

This is the package used by the individual scientists to do data

analysis as well as tools used by various automated pipelines in the

submission system, the workflow system, and the release manager

proper. Each of these three components are supported by a series

of database tables to drive the processes and store state and

metadata about the pending, running and completed builds.Mac OS X, both 32 and 64 bit). In order to ensure that the software

works across the full range of supported systems, the LAT

collaboration has developed an automated Release Manager

system to checkout, compile and test any new code across all these

analysis as well as tools used by various automated pipelines in the

collaboration (flaring source detection, catalog generation, etc.)

• GlastRelease – Named before the mission name was changed to

Fermi, the GlastRelease package contains all of the simulation and

Batch Submission System
The Release Manager utilizes the LSF batch submission system at

SLAC National Accelerator Laboratory. Through this system we have system to checkout, compile and test any new code across all these

systems regardless of which system it was developed on.

This poster describes the newest version of this Release

Manager system developed in conjunction with the move by the

Fermi, the GlastRelease package contains all of the simulation and

data reconstruction software for the mission. It contains a high

fidelity spacecraft model and physics simulation used for

generating large simulation data sets to study the instrument

response. The GlastRelease package also contains all the software

SLAC National Accelerator Laboratory. Through this system we have

access to hardware (either purchased by the Fermi mission or as a

shared resource) running all of our supported operating systems that

we can use for build and testing of the various software packages.Manager system developed in conjunction with the move by the

collaboration to the use of SCons as our build tool of choice

(described elsewhere at this conference). Built upon the Qt

framework, the Release Manager leverages the batch submission

response. The GlastRelease package also contains all the software

and algorithms used to reconstruct the data received from the

spacecraft (or simulation) into useful scientific data. The software

in the GlastRelease package is used by the data reconstruction

we can use for build and testing of the various software packages.

This is the lowest level component of the system and manages the

individual processes of the builds and provides the status

information to the other portions of the system.framework, the Release Manager leverages the batch submission

system at the SLAC National Accelerator Laboratory (SLAC) to build

and test any new code changes on all relevant platforms. Here we

describe the design of the system as well as issues encountered in

in the GlastRelease package is used by the data reconstruction

pipeline to process the data as it arrives from the spacecraft and

prepare it for the data archive and use by the Science Tools.

• Command, Health and Safety (CHS) – This package contains the

information to the other portions of the system.

Workflow System
The Workflow system is a rule based script execution system. Each describe the design of the system as well as issues encountered in

its implementation.

• Command, Health and Safety (CHS) – This package contains the

software responsible for generating commands sent to the

instrument to control operation as well as receiving and analyzing

telemetry data downloaded from the instrument during operation.

• TMineRelease – This package contains a classification tree data

The Workflow system is a rule based script execution system. Each

script or program is considered a stage in the workflow. The

workflow moves from one stage to the next by evaluating rules set

forth for each stage. The rules are stored in the database as a series • TMineRelease – This package contains a classification tree data

mining package that is used as part of the data analysis and

reconstruction done by the software in the GlastRelease package.

It was split out into its own package to facilitate rapid development

forth for each stage. The rules are stored in the database as a series

of conditions and steps to execute if the conditions are met. Each

stage of the workflow consists of a script or program that is passed

to the Batch Submission System for execution.

MySQLIt was split out into its own package to facilitate rapid development

without encumbering the much larger GlastRelease package.

to the Batch Submission System for execution.

Release Manager System
The Release Manager System consists to two main parts. At the very

top, is the Release Manager Daemon that runs and monitors the CVS

MySQL

Databases
User Tools

Supported Operating Systems
The LAT collaboration software is supported across a variety of

top, is the Release Manager Daemon that runs and monitors the CVS

repository for new tags and triggers the appropriate workflows to

actually execute the builds.

Release Manager Daemon
The LAT collaboration software is supported across a variety of

operating systems and environments. These operating system

include systems used by developers, end users within the LAT

collaboration, and the various operating environments that the

production software needs to run in for simulation and data

At the lower level, this system is composed of the actual programs

executed by the Workflow system to checkout code, build the

software, test the software and package it for distribution and

Release Manager Daemon
Workflow

Systemproduction software needs to run in for simulation and data

processing.

Currently we support development and/or operation of the various

software, test the software and package it for distribution and

download as well as command line tools for deleting and triggering

builds.

System
CVS

Currently we support development and/or operation of the various

software systems on the following operating systems:

• Redhat Enterprise Linux 4 – 32 and 64 bit systems

• Redhat Enterprise Linux 5 – 32 and 64 bit systems Building a Release
LSF Batch System• Redhat Enterprise Linux 5 – 32 and 64 bit systems

• Windows – Visual Studio 2003 compilers (soon to be discontinued)

• Windows – Visual Studio 2008 compilers

• Mac OS X versions 10.4 (Tiger) and 10.6 (Snow Leopard)

Building a Release
The process of building, testing and packaging a release consists of

several steps that are managed by the Workflow System and

executed by software that is part of the Release Manager System.

LSF Batch System

Redhat EL 4 – 32 bit OS X 10.4 – 32 bit executed by software that is part of the Release Manager System.

The basic steps are:

• Checkout – Selects all the sub-packages that are to be part of the

build via the appropriate tag in the CVS repository and places Build Types

Redhat EL 4 – 32 bit

Redhat EL 4 – 64 bit

OS X 10.4 – 32 bit

OS X 10.6 – 32 bit build via the appropriate tag in the CVS repository and places

them in a central build location

• Compile – SCons is invoked to build the package. (See poster

P099 for details on our use of SCons.) Output is recorded and

stored in the database.

Build Types
The Release manager supports three basic build types: Integration,

Release Candidate, and Release.

Redhat EL 4 – 64 bit

Redhat EL 5 – 32 bit

OS X 10.6 – 32 bit

Windows VS 2003 – 32 bit
stored in the database.

• Test – Nearly all of the sub-packages have unit and validation

tests that are run to verify that all the code is working properly.

Each test is run independently and the output is stored in the

Integration Builds
This type of build is automatically triggered whenever a software

component receives a new tag in the CVS repository. The Release

Redhat EL 5 – 32 bit

Redhat EL 5 – 64 bit

Windows VS 2003 – 32 bit

Windows VS 2008 – 32 bit
Each test is run independently and the output is stored in the

database.

• Package – Running in parallel with the testing, each build has a

source, user and developer distribution package created to allow

component receives a new tag in the CVS repository. The Release

Manager Daemon regularly checks the repository looking for new

tags on the various sub-packages that make up each release package.

When one or more new tags are discovered, a new Integration build

is triggered. Debug versions of the packages are built automatically

Schematic of the basic components of the LAT Release Manager System –

User tools can request the triggering or deletion of a build by updating the source, user and developer distribution package created to allow

users and developers do download and work with the specific

version of the code built and tested.

• Cleanup – Once all other processing is done, a script is run to

clean up the build process and store any final metadata in the

is triggered. Debug versions of the packages are built automatically

but optimized version can be triggered manually if desired. The

Integration builds are primarily designed to provide rapid feedback

to developers on changes made to the code and to verify that

appropriate tables in the database. The Release Manager Daemon

monitors both the database and the CVS repository for changes. When a

change occurs it triggers the Workflow System to actually execute the
clean up the build process and store any final metadata in the

database.

to developers on changes made to the code and to verify that

changes made work on all supported operating systems.

Release Candidate Builds

change occurs it triggers the Workflow System to actually execute the

build. The workflow system leverages the LSF batch system to run

multiple builds in parallel and records state and status in the database.

The various operating systems/compilers that the Release Manager system Release Candidate Builds
These builds are triggered by a specific tag that is manually applied

by the release package owner. They are triggered in preparation for

a release build to verify that the selected tagged versions of the sub-

packages build and work together properly. They contain the
Using Qt

The various operating systems/compilers that the Release Manager system

software run on are shown in grey. Not show (for clarity) are the

connections between the execution hosts in the batch system and the

MySQL database and CVS repository used for fetching the code and
packages build and work together properly. They contain the

appropriate tags for the release in a combination that may or may

not have existed in the Integration builds. Once the tag is applied to

the appropriate sub-packages, debug versions of this build are

Using Qt
Qt is used as a framework to build the various programs that

comprise the build system in order to provide parallel and

asynchronous execution of the various parts of the build system.

The main highlights are discussed here.

MySQL database and CVS repository used for fetching the code and

logging of the various processes.

the appropriate sub-packages, debug versions of this build are

created for each supported OS.

Release Builds

The main highlights are discussed here.

The Release Manager Daemon leverages the QTimer class to set up

an asynchronous polling system to check each of the 12 possible

Issues and Lessons Learned
No large system is constructed and works without issues. Here we highlight some

Release Builds
These are he builds intended for distribution to the collaboration and

for use in the various automated systems run by the LAT team (data

processing, catalog analysis, etc.). These builds are triggered by the

an asynchronous polling system to check each of the 12 possible

builds (4 Packages and 3 build types) on a configurable polling

interval to look for new builds that need to be started.

No large system is constructed and works without issues. Here we highlight some

of the hurdles we had to overcome and lessons learned along the way.

• LSF on multiple operating systems - Since the batch queuing system was at the
processing, catalog analysis, etc.). These builds are triggered by the

existence of the appropriate release tag in CVS which is applied

manually by the package owner. The existence of the appropriate

tag causes the Release Manager to automatically build debug and

optimized versions of the software for each supported operating

Once the need for a new build has been determined, the software

leverages the QProcess class to launch each of the up to 16 build

variations (8 OSes each with a Debug and/or Optimized build) in its

own thread for processing.

• LSF on multiple operating systems - Since the batch queuing system was at the

center of the build system, understanding its operation and peculiarities was

essential to correct operation. There were subtle differences between the way

the LSF system worked with the underlying operating system on the target
optimized versions of the software for each supported operating

system.
own thread for processing.

In addition to allowing the entire system to be multi-threaded, the

QProcess class allows the system to be robust against hung

the LSF system worked with the underlying operating system on the target

machines, especially between the Unix-like OSes and Windows.

• General Windows Support – Supporting Windows has been both a boon and a

thorn in our side. On the one hand, the Windows tools and compilers are high

quality and having to support builds with both Visual Studio and GCC compilers QProcess class allows the system to be robust against hung

processes and other unexpected failures as we utilize the ability to

limit the time the process remains active. Processes and build

stages that exceed the configured (generous) time limit are

quality and having to support builds with both Visual Studio and GCC compilers

has resulted in a strong, robust code base. On the other hand, the Windows

environment is very different from the Unix-like OSes and special care has to be

taken in many of the configuration issues to account for the differences. stages that exceed the configured (generous) time limit are

cancelled and errors are reported.

Finally, all of the classes and tools associated with the build system

make heavy use of the QSqlQuery class to provide easy access to

taken in many of the configuration issues to account for the differences.

• Windows Network Storage – In addition, the use of AFS network mounted

storage on Windows resulted in very slow performance of the entire system.

Since the builds are run through the batch system and different portions may run
make heavy use of the QSqlQuery class to provide easy access to

the MySQL databases that hold all of the configuration parameters,

build status information and logging.

Since the builds are run through the batch system and different portions may run

on different machines, all the code, libraries, etc need to be on shared disks. The

performance on Windows is so bad (8-12 hours instead of ~1) that we are moving

all of our Windows builds to a single multi-core machine with a large local disk.

