
D. J. Burke,
Smithsonian Astrophysical Observatory, 60 Garden Street Cambridge, MA 02138

This work was supported by the Chandra X-ray Center under NASA contract NAS8-03060.

Charming users into scripting CIAO with Python
 The ciao_contrib.runtool module

The CIAO data analysis system uses parameter files to define
the user-interface of tools and scripts that it provides. These
parameter files provide the names, types, default values,
possible constraints, and help text for the parameters, or
arguments, that the tools use. Users can query these files to
find out what inputs and outputs a tool uses, find what the
current values are, or change the values. Below we show a
typical sequence of commands that a user may write at the
command line or in a Shell script, and to the right the
equivalent calls using the ciao_contrib.runtool module:

chips-1> from ciao_contrib.runtool import acis_bkgrnd_lookup
chips-2> print(acis_bkgrnd_lookup)
Parameters for acis_bkgrnd_lookup:

Required parameters:
 infile = Event file for which you want background files

Optional parameters:
 outfile = ACIS background file(s) to use
 blname = none What block identifier should be added to the filename?
 verbose = 0 Debug level (0=no debug information)
chips-3> abl = acis_bkgrnd_lookup
chips-4> abl.bln = "foo"
ValueError: The parameter blname was set to foo when it must be one of:
 none name number cfitsio
chips-5> abl.blname = "name"
chips-6> abl.verbose = 10
ValueError: acis_bkgrnd_lookup.verbose must be <= 5 but set to 10

chips-7> abl("missing.fits", verb=0)
IOError: An error occurred while running 'acis_bkgrnd_lookup':
 # acis_bkgrnd_lookup (25 October 2010): ERROR Unable to open infile='missing.fits'

chips-8> for (pname,pval) in abl:
 print("{0}.{1} -> {2}".format(abl.toolname(), pname, pval))

acis_bkgrnd_lookup.infile -> missing.fits
acis_bkgrnd_lookup.outfile -> None
acis_bkgrnd_lookup.blname -> name
acis_bkgrnd_lookup.verbose -> 0
chips-9> help abl
Help on CIAOToolParFile in module ciao_contrib.runtool object:

class CIAOToolParFile(CIAOTool)
 | Run a CIAO tool using a separate parameter file.
 |
 | See the help for CIAOTool for information on this
 | class.
 |
 | Method resolution order:
 | CIAOToolParFile
 | CIAOTool
 | CIAOParameter
 | __builtin__.object
 | ...

Abstract

The Science Data Systems group of the Chandra X-ray Center provides a
number of scripts and Python modules that extend the capabilities of CIAO
(http://cxc.harvard.edu/ciao/). Experience in converting the existing
scripts - written in a variety of languages such as bash, csh/tcsh, Perl and
S-Lang - to Python, and conversations with users, led to the development
of the ciao_contrib.runtool module.

This allows users to easily run CIAO tools from Python scripts, and
utilizes the metadata provided by the parameter-file system to create an
API that provides the flexibility and safety guarantees of the
command-line. The module is provided to the user community and is being
used within our group to create new scripts, which is described in poster
P085 “Python Scripting for CIAO Data Analysis”.

An excerpt from a mythical shell script that filters
an event file, finds out the matching “blank-sky” background
file for the resulting file, and then filters that file
#

dmcopy "evt2.fits[sky=region(src.reg),energy=500:7000]" src.fits clobber=yes
acis_bkgrnd_lookup src.fits verbose=0
set bfile = `pget acis_bkgrnd_lookup outfile`
dmcopy "${bfile}[energy=500:7000]" bg.fits

Conversion to Python

from ciao_contrib.runtool import dmcopy, acis_bkgrnd_lookup

dmcopy("evt2.fits[sky=region(src.reg),energy=500:7000]", "src.fits",
 clobber=True)
acis_bkgrnd_lookup("src.fits", verbose=0)
bfile = acis_bkgrnd_lookup.outfile
dmcopy("{0}[energy=500:7000]".format(bfile), "bg.fits")

Goals of the Python interface

Prioritize familiarity and simplicity over functionality.
Map tool names to functions (actually objects).
Avoid worries about quoting special characters (CIAO filters can
 contain “awkward” characters such as []!*'").
Provide names arguments matching those of the tools.
Type conversion and verification for argument values.
Easy access to screen output of the tool.
Convert tool failures to Python IOError exceptions.
Mimic parameter access via object attributes.
Support running multiple copies of the tool simultaneously.

% plist acis_bkgrnd_lookup

Parameters for /Users/dburke/cxcds_param4/acis_bkgrnd_lookup.par

 infile = Event file for which you want background files
 outfile = ACIS background file(s) to use
 (blname = none) What block identifier should be added to the filename?
 (verbose = 0) Debug level (0=no debug information)
 (mode = ql)

% pset acis_bkgrnd_lookup verbose=1
% pset acis_bkgrnd_lookup blname=all
pquery: invalid enumerated value : blname
What block identifier should be added to the filename?
 (none|name|number|cfitsio) (none): name

% cat `paccess acis_bkgrnd_lookup`
infile,f,a,"",,,"Event file for which you want background files"
outfile,f,l,"",,,"ACIS background file(s) to use"
blname,s,h,"name",none|name|number|cfitsio,,
 "What block identifier should be added to the filename?"
verbose,i,h,1,0,5,"Debug level (0=no debug information)"
mode,s,h,"ql",,,

Parameter files and tools

Running multiple copies of a tool

One of the design goals of the module is to allow the user to easily run multiple copies of a tool
simultaneously, whether via the multiprocessing module or by repeated runs of the same
script. Simultaneous runs of a tool is likely to cause corruption of the parameter file, since each
copy is reading and writing the same file, which can lead to invalid output. To avoid this, each
copy of the tool is run with its own unique (temporary) parameter file, supplied using the
@@parname functionality of the CIAO parameter library, which is removed once the tool has
finished.

There are two problems with this approach:

1) a small subset of CIAO tools do not support the @@parname syntax; these tools are run
with all its parameters set on the command line to reduce the chance of corruption, and

2) some tools, in particular those that are wrappers around other tools, require multiple
parameter files.

Whilst the CIAO 4.3 release essentially removes the first problem (only the dmgti tool remains
in this category), the second problem can only be avoided by explicitly creating separate
directories to store the parameter files for each task. This can be achieved using the
set_pfiles() routine provided by the module, which changes the user-directory portion of the
PFILES environment variable used by the parameter library.

Further Information
http://cxc.harvard.edu/ciao/scripting/runtool.html

http://cxc.harvard.edu/ciao/ahelp/ciao_runtool.html

Future Work

The main aims of the module have been met, so future development depends on user feed-back.
The main areas that have been identified so far are:

1) extending to support other systems with parameter files, notably the FTOOLS package,
2) support for piping tools together to avoid the need to create intermediary files, and
3) complete support for the parameter interface.

Implementation details

The functionality is provided by the following class structure

where the CIAOParameter class supports the reading and writing of parameter values and is
used to support the small set of CIAO parameter files which are not associated with an
individual tool (configuration or informational files). The CIAOTool class is the basis for
callable tools but the actual implementation is left to the CIAOToolParFile and
CIAOToolDirect classes. Most tools are handled by the former, with the latter class provided
to handle those few tools and scripts which do not support the @@parfile syntax (as discussed
in the “Running multiple copies of a tool” section). Actually running a tool is a thin layer
around the subprocess module; most of the code goes into validating the parameter values.

The module is created by code generation - based on a parsed view of the CIAO parameter files
- rather than having the necessary instances created either when the module is loaded or
explicitly by the user. The trade off here was ease, and speed, of use for the user versus a more
complicated development environment. Since the functionality is encapsulated within a class
structure, it would be relatively easy to switch to the run-time approach.

Although CIAO provides a Python module that binds to the parameter library, this interface is
low level and does not provide the required functionality - in particular parameter validation
without error messages or requiring user interaction - which means that a significant part of the
module is essentially replicating the functionality of the parameter library.

Since CIAO tools occasionally use both the stdout and stderr channels to output information, so
both channels are combined into one and returned to the caller when the tool finishes. If the tool
returns a non-zero exit status the screen output is instead returned to the user as the message
payload of an IOError exception. There are several tools which do not set the exit status on
certain errors, which will result in the Python routine apparently succeeding.

As the module is intended for use from within a Python, the interactive mode of operation of
CIAO tools, where users are prompted for missing or invalid parameter values, is not supported
by the module. Attempts to include the tool or parameter information in the Python docstrings
for the routines was not successful; once it started to require the use of Python metaclasses the
complexities of the interface outweighed the benefits to the user.

CIAOParameter

CIAOTool

CIAOToolParFile CIAOToolDirect

