
Possible Future Enhancements

Modeling and Fitting data is the next leap to take to get from data analysis to data reduction. For Chandra
data, this often necessitates having access to an array of ancillary observation specific files and to a large
volume of calibration data. This provides an entirely new challenge in data management. Below is an
example proof-of-concept showing how to use the Sherpa fitting and modeling application via dax to fit a
spectral model

Work is also underway to evaluate the costs and benefits of providing dax tasks as remote services. In
addition to the UNIX shell, ds9 already supports a URL based execution model and VO standards such as the
Universal Work Service REST bindings map well to the dax architecture.

Possible Future Enhancements

Modeling and Fitting data is the next leap to take to get from data analysis to data reduction. For Chandra
data, this often necessitates having access to an array of ancillary observation specific files and to a large
volume of calibration data. This provides an entirely new challenge in data management. Below is an
example proof-of-concept showing how to use the Sherpa fitting and modeling application via dax to fit a
spectral model

Work is also underway to evaluate the costs and benefits of providing dax tasks as remote services. In
addition to the UNIX shell, ds9 already supports a URL based execution model and VO standards such as the
Universal Work Service REST bindings map well to the dax architecture.

Loading Menu and Initialization

dax is loaded for CIAO users be default by means of a wrapper that uses the
-analysis command line switch. While users can setup to have it loaded
automatically via ds9 preferences, the path CIAO uses changes with each
release and this was found to be the easiest for CIAO users.

By default, dax uses the ChiPS plotting package in CIAO to produce plots
such as light-curves and spectra. In CIAO 4.3, we provide a start-up script
that launches the ChiPS server when ds9 starts so that plotting happens more
quickly and without the need for a terminal. This is a simpe tcl/tk script that is
sourced at statup. If ChiPS is not installed, dax will use the BLT plotting
packaged in ds9.

The CIAO ds9 wrapper script looks something like:

Loading Menu and Initialization

dax is loaded for CIAO users be default by means of a wrapper that uses the
-analysis command line switch. While users can setup to have it loaded
automatically via ds9 preferences, the path CIAO uses changes with each
release and this was found to be the easiest for CIAO users.

By default, dax uses the ChiPS plotting package in CIAO to produce plots
such as light-curves and spectra. In CIAO 4.3, we provide a start-up script
that launches the ChiPS server when ds9 starts so that plotting happens more
quickly and without the need for a terminal. This is a simpe tcl/tk script that is
sourced at statup. If ChiPS is not installed, dax will use the BLT plotting
packaged in ds9.

The CIAO ds9 wrapper script looks something like:

Returning Results

ds9 supports 3 different output models: $data, $image, and $text. A fourth, $null, is available when the action of the analysis task is handles via other means. For
example one dax task modifies the currently selected region to shift it to the data centroid. The regions are read and written via XPA. dax makes use of all these methods;
though even when xpa is used to return results dax still uses the $text directive since it can also capture any processing errors.

dax tries to deliver data in the most useful format for quick evaluation at the same time trying not to leave the data "trapped" in ds9.

Returning Results

ds9 supports 3 different output models: $data, $image, and $text. A fourth, $null, is available when the action of the analysis task is handles via other means. For
example one dax task modifies the currently selected region to shift it to the data centroid. The regions are read and written via XPA. dax makes use of all these methods;
though even when xpa is used to return results dax still uses the $text directive since it can also capture any processing errors.

dax tries to deliver data in the most useful format for quick evaluation at the same time trying not to leave the data "trapped" in ds9.

Data Input to Analysis Task

The data being displayed in ds9 (most often in the current frame) are easily accessible to dax. ds9 provides
several methods to access the data depending on the needs of the application. These are summarized below

There are pro's and con's to each method. Following the dax philosophy, most scripts make use of the $data and
$filename macros as they are the simplest to use and work most of the time. The $xpa method is primarily
reserved for those times when many parameters associated with the data are passed into the script or the task
needs to be especially robust.

Data Input to Analysis Task

The data being displayed in ds9 (most often in the current frame) are easily accessible to dax. ds9 provides
several methods to access the data depending on the needs of the application. These are summarized below

There are pro's and con's to each method. Following the dax philosophy, most scripts make use of the $data and
$filename macros as they are the simplest to use and work most of the time. The $xpa method is primarily
reserved for those times when many parameters associated with the data are passed into the script or the task
needs to be especially robust.

Architecture

The dax philosophy is “ Simple should be done simply.”

This means not only should it be simple for users to do simple things, but the
code to do it should be equally simple.

dax is a collection of scripts. It is a hierarchical ds9 analysis menu (ciao.ds9)
and a suite of simple shell scripts that wrap CIAO tools.

The syntax of the ds9 analysis menu is simple but feature-rich. It provides
basic UI elements: text-entry, radio/check-boxes, lists, key-bindings, etc. A
comprehensive review of the analysis file syntax is beyond the scope of this
poster; however we provide a simplified example showing a dax task, to get
coordinates in various Chandra coordinate systems.

A simplified version of the script 'ds9_coord.sh' is shown below

With these two simple pieces users can run the CIAO dmcoords which returns
the coordinate transforms for the current crosshair location in a pop-up text box.

Architecture

The dax philosophy is “ Simple should be done simply.”

This means not only should it be simple for users to do simple things, but the
code to do it should be equally simple.

dax is a collection of scripts. It is a hierarchical ds9 analysis menu (ciao.ds9)
and a suite of simple shell scripts that wrap CIAO tools.

The syntax of the ds9 analysis menu is simple but feature-rich. It provides
basic UI elements: text-entry, radio/check-boxes, lists, key-bindings, etc. A
comprehensive review of the analysis file syntax is beyond the scope of this
poster; however we provide a simplified example showing a dax task, to get
coordinates in various Chandra coordinate systems.

A simplified version of the script 'ds9_coord.sh' is shown below

With these two simple pieces users can run the CIAO dmcoords which returns
the coordinate transforms for the current crosshair location in a pop-up text box.

dax: ds9 analysis extensions in CIAO

Abstract

dax is a suite of scripts that allows various CIAO tools (written to support the Chandra X-ray Observatory) to be run using SAOImage ds9's analysis framework. This allows users to quickly leverage the functionality CIAO provides without having to invest in learning the syntax and semantics
of each of the tools. This simplification of the interface benefits all astronomers since many of the CIAO tools are sufficiently generic that they can work with data sets from arbitrary observatories.

In this poster we will present the dax architecture, highlight some of the CIAO tasks that have been made available via dax, and discuss some of the pitfalls and limitations we encountered. We will also present some possible future directions for dax including additional analysis tasks and
potential for remote analysis.

Abstract

dax is a suite of scripts that allows various CIAO tools (written to support the Chandra X-ray Observatory) to be run using SAOImage ds9's analysis framework. This allows users to quickly leverage the functionality CIAO provides without having to invest in learning the syntax and semantics
of each of the tools. This simplification of the interface benefits all astronomers since many of the CIAO tools are sufficiently generic that they can work with data sets from arbitrary observatories.

In this poster we will present the dax architecture, highlight some of the CIAO tasks that have been made available via dax, and discuss some of the pitfalls and limitations we encountered. We will also present some possible future directions for dax including additional analysis tasks and
potential for remote analysis.

Kenny J. Glotfelty (SAO), Joseph Miller (SAO), Judy Chen (SAO)

$xpa

Passes the XPA access point name to
the analysis task

● Can use xpa commands to access
specific data elements.

● Race condition: non-locking, user
can switch frames

● Provides the most flexibility and
often requires the most code

● Multiple ds9's running at same
time can produce unexpected
results unless each is given unique
name by user at startup via -title
command line argument

$filename

Passes path, file-name, and
extension to analysis task

● Access to tables or images
● Only applies to files loaded from

disk. Cannot access files
● retrieved remotely (SAMP,

Image Servers, etc)
● generated from analysis tasks

● Access to multiple blocks of data:
eg GTI extensions

● Be wary of filter and extension
selection syntax

$data

FITS image is piped to stdout

● WYSIWYG
● Only images
● If table is loaded then the image

displayed is piped
● Only minimal header

information is passed along.
● default is 1k x 1k (adjust under

Binning menu)
● Easiest to use with image-

in/image-out analysis tasks

ds9 -analysis ciao.ds9 -source chips_startup.tk

All Coordinates
*
menu
ds9_coord.sh $xpa | $text

#! /bin/sh
ds9=$1

x=`xpaget $ds9 crosshair | awk '{print $1}'`
y=`xpaget $ds9 crosshair | awk '{print $2}'`
f=`xpaget $ds9 file `

dmcoords "${f}" op=sky x=$x y=$y mode=h verb=1

Special Considerations

ds9 is capable of displaying much more than simple 2D images from a single FITS file. For example it can now
create mosaics from multiple files, 3-color (RGB) images, and display data from cubes up to 10 dimensions. All
of these special data types can cause unexpected behavior in dax and other analysis tasks that are not expecting
such diverse datasets.

When working with tabular data such as Chandra event files one has to be careful about filtering and binning
syntax. ds9 uses the funtools syntax to specifying column filters and extensions. These are not always the same
as CIAO virtual file specification nor the same as CFITSIO (and FTOOLS).

Regions are notoriously problematic. Different analysis systems use different syntax for shapes (box expressed as
lower-left/upper-right, or center with x and y lengths) ; provide different shapes (eg, ds9's panda); and imply
different intent when multiple shapes are drawn (shapes ANDed or ORed together).

Special Considerations

ds9 is capable of displaying much more than simple 2D images from a single FITS file. For example it can now
create mosaics from multiple files, 3-color (RGB) images, and display data from cubes up to 10 dimensions. All
of these special data types can cause unexpected behavior in dax and other analysis tasks that are not expecting
such diverse datasets.

When working with tabular data such as Chandra event files one has to be careful about filtering and binning
syntax. ds9 uses the funtools syntax to specifying column filters and extensions. These are not always the same
as CIAO virtual file specification nor the same as CFITSIO (and FTOOLS).

Regions are notoriously problematic. Different analysis systems use different syntax for shapes (box expressed as
lower-left/upper-right, or center with x and y lengths) ; provide different shapes (eg, ds9's panda); and imply
different intent when multiple shapes are drawn (shapes ANDed or ORed together).

Conclusions

ds9 provides easy access to external analysis packages via its feature-rich analysis menu framework. dax uses
this framework to give CIAO users access to many common analysis tasks. Using dax, CIAO users do not need
to invest in learning the datamodel's filtering and binning syntax. Instead they can quickly jump into their
analysis and get a feel for their data. Not all CIAO tasks are appropriate to be wrapped by dax. Those that do
things such as apply event-by-event calibrations or produce intermediate analysis products are best left to users to
run stand alone. Also tasks that take especially long to run are best left out of the GUI. Currently dax is a great
tool to quickly explore ones datasets. More detailed analysis requires additional data products and calibrations.
Future dax enhancements are being considered to access some of these additional data products and provide
users with a small subset of the Fitting and Modeling capabilities in Sherpa. Finally as we move into the era of
Cloud computing, many of the dax tasks are already well suited to be run remotely though data management
challenges do remain.

This project is funded by NASA contract NAS8-03060 (CXC).

Conclusions

ds9 provides easy access to external analysis packages via its feature-rich analysis menu framework. dax uses
this framework to give CIAO users access to many common analysis tasks. Using dax, CIAO users do not need
to invest in learning the datamodel's filtering and binning syntax. Instead they can quickly jump into their
analysis and get a feel for their data. Not all CIAO tasks are appropriate to be wrapped by dax. Those that do
things such as apply event-by-event calibrations or produce intermediate analysis products are best left to users to
run stand alone. Also tasks that take especially long to run are best left out of the GUI. Currently dax is a great
tool to quickly explore ones datasets. More detailed analysis requires additional data products and calibrations.
Future dax enhancements are being considered to access some of these additional data products and provide
users with a small subset of the Fitting and Modeling capabilities in Sherpa. Finally as we move into the era of
Cloud computing, many of the dax tasks are already well suited to be run remotely though data management
challenges do remain.

This project is funded by NASA contract NAS8-03060 (CXC).

Task Selection

CIAO has over 100 tools and applications; dax makes only a few available.
The following are some considerations that were made when selecting which
CIAO tasks dax would enable:

● Typical run-time: GUI users are looking for quick feedback so tasks like the
CIAO wavdetect tool which can take a long time to run are not included.

● Self contained input files: If a task needs auxiliary files (eg badpixel files or
aspect solution) then its usefulness as a dax task is limited. As of ds9 6.1 a
new analysis macro is available to selection additional files; however for
multiple files this can stifle the GUI user experience.

● Mission independence: Many of the CIAO tasks are indeed mission
independent; those that are Chandra-specific need to be well behaved for non-
Chandra data and also not require arbitrary calibrations

● Output type: One of the dax challenges is how to return results in a useful
format. If the output of a particular task is more often than not just used as
input to another task then it would not be included in dax. The output should
be a product upon which further analysis can be done, eg by dax.

Task Selection

CIAO has over 100 tools and applications; dax makes only a few available.
The following are some considerations that were made when selecting which
CIAO tasks dax would enable:

● Typical run-time: GUI users are looking for quick feedback so tasks like the
CIAO wavdetect tool which can take a long time to run are not included.

● Self contained input files: If a task needs auxiliary files (eg badpixel files or
aspect solution) then its usefulness as a dax task is limited. As of ds9 6.1 a
new analysis macro is available to selection additional files; however for
multiple files this can stifle the GUI user experience.

● Mission independence: Many of the CIAO tasks are indeed mission
independent; those that are Chandra-specific need to be well behaved for non-
Chandra data and also not require arbitrary calibrations

● Output type: One of the dax challenges is how to return results in a useful
format. If the output of a particular task is more often than not just used as
input to another task then it would not be included in dax. The output should
be a product upon which further analysis can be done, eg by dax.

$geturl(http://cxcserver/ciao_task?filename=$filename&xpa=$xpa...) | $text

User Parameters

dax takes a minimalist approach when faced with gathering input from users.
By keeping the tasks small and very specific users do not need to know all the
behind the scenes details; while at the same time similar tasks are grouped into
single scripts. The PHA, PI, TIME, and EXPNO histograms all run a single
dax script that calls the CIAO tool dmextract with the correct settings to create
the requested plot. Many dax tasks do not require any user parameters to be
entered separately.

User Parameters

dax takes a minimalist approach when faced with gathering input from users.
By keeping the tasks small and very specific users do not need to know all the
behind the scenes details; while at the same time similar tasks are grouped into
single scripts. The PHA, PI, TIME, and EXPNO histograms all run a single
dax script that calls the CIAO tool dmextract with the correct settings to create
the requested plot. Many dax tasks do not require any user parameters to be
entered separately.

http://cxcserver/ciao_task?filename=$filename&xpa=$xpa

	Slide 1

